Programme Specification (UG)

Awarding body / institution: Queen Mary University of London
Teaching institution: Queen Mary University of London
Name of final award and programme title: BEng Materials Science with Foundation
Name of interim award(s): Foundation Certificate (FdCert) - as an exit award only
Duration of study / period of registration: 4 years
QMUL programme code / UCAS code(s): JJX3, USEF-QM4MTL1, USMTS
QAA Benchmark Group:
FHEQ Level of Award: Level 3
Programme accredited by:
Date Programme Specification approved: 13 May 2021
Responsible School / Institute: School of Engineering & Materials Science

Schools / Institutes which will also be involved in teaching part of the programme:
School of Biological & Behavioural Sciences
School of Languages, Linguistics & Film
School of Physics and Astronomy

Collaborative institution(s) / organisation(s) involved in delivering the programme:

Programme outline

The BEng Materials Science with Foundation provides an alternative route onto an undergraduate Materials degree, combining a foundation year with a traditional university degree in an integrated four-year programme (1+3). QMUL offers tailored pathways for subjects across science and engineering.

BEng Materials Science with Foundation is open to home/EU and international students and face to face sessions are taught entirely at the Mile End campus by university staff. In-line with Queen Mary’s 2030 Strategy, high quality learning resources and interactive sessions with academic staff will be available online. As a foundation student, you have access to all QMUL’s facilities and will be a full-time student of the university. Both UK/EU and international students should apply directly through UCAS.

Highlights:
Programme Title: JJX3 BEng Materials Science with Foundation

- Opportunity to progress onto a Materials Science undergraduate degree
- Study at campus-based university within easy reach of all of London’s attractions
- Eligible for funding through Student Loans Company (UK/EU students only)
- Full access to all student facilities (academic, welfare, IT, library, social and sport)
- Experienced and well-qualified teaching staff, many of whom teach on undergraduate and postgraduate programmes

Aims of the programme

The foundation year will equip you with the skills and knowledge to undertake an undergraduate degree in materials science. Successful completion of this programme at the appropriate level guarantees you a place on a range of materials science programmes including:

Materials Science and Engineering BEng or BSc

What will you be expected to achieve?

- Pass 105 credits including SEF030 Communication in Science and Technology, SEF003 Introductory Chemistry, SEF005 Physics - Mechanics and Materials and SEF040 Mathematics A or SEF041 Mathematics B
- Achieve an overall average of $\geq 55\%$, including $\geq 55\%$ in SEF040 Mathematics A or SEF041 Mathematics B
- For progression onto particular programmes there may be additional requirements. Please check the handbook or contact fedu@qmul.ac.uk for more information

Please note that the following information is only applicable to students who commenced their Level 4 studies in 2017/18, or 2018/19

In each year of undergraduate study, students are required to study modules to the value of at least 10 credits, which align to one or more of the following themes:

- networking
- multi- and inter-disciplinarity
- international perspectives
- enterprising perspectives.

These modules will be identified through the Module Directory, and / or by your School or Institute as your studies progress.

Academic Content:

A 1 The purpose of materials science, the spectrum of activities in materials science, theory and practice as applied to materials science problems, the need for standardisation and the development of standards.
Programme Title: JJX3 BEng Materials Science with Foundation

<table>
<thead>
<tr>
<th>A2</th>
<th>Mechanical properties of commonly used engineering materials; thermal stresses in large structures, the use of factors of safety in design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>Electrons inside the Atom: Ionisation and excitation; hydrogen spectrum, energy levels; Bohr model of the atom, theory of energy levels; periodic table; X-rays and their uses.</td>
</tr>
<tr>
<td>A4</td>
<td>Gravitational Fields: Force and potential; Newton's theory of gravitation; planetary fields; satellite motion.</td>
</tr>
<tr>
<td>A5</td>
<td>Wave Motion: Progressive waves; wave properties; qualitative treatment of stationary waves; mechanical waves and resonance.</td>
</tr>
<tr>
<td>A6</td>
<td>Introduction to atomic structure: electrons, protons and neutrons, mass and atomic numbers, isotopes and radioactivity, measures of size of atoms and ions.</td>
</tr>
<tr>
<td>A7</td>
<td>Mathematical topics such as algebra, functions, geometry and trigonometry, and an introduction to the techniques of calculus.</td>
</tr>
</tbody>
</table>

Disciplinary Skills - able to:

<table>
<thead>
<tr>
<th>B1</th>
<th>present data in reports in a readily-assimilated fashion, and in accord with scientific conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>solve problems involving finite, infinite and power series</td>
</tr>
<tr>
<td>B3</td>
<td>understand a range of appropriate and relevant experimental techniques and how they are used; be able to perform some of them.</td>
</tr>
</tbody>
</table>

Attributes:

<table>
<thead>
<tr>
<th>C1</th>
<th>To grasp the principles and practices of their field of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>To produce analyses which are grounded in evidence</td>
</tr>
<tr>
<td>C3</td>
<td>To apply their analytical skills to investigate unfamiliar problems</td>
</tr>
<tr>
<td>C4</td>
<td>To work individually and in collaboration with others</td>
</tr>
<tr>
<td>C5</td>
<td>To develop a strong sense of intellectual integrity</td>
</tr>
<tr>
<td>C6</td>
<td>To acquire substantial bodies of new knowledge</td>
</tr>
</tbody>
</table>

How will you learn?

Independent study
For every hour spent at university you will be expected to complete additional hours of independent study. Your individual study time could be spent preparing for, or following up on formal study sessions; reading; assessing data from experiments; completing lab reports; and revising for examinations. The direction of your individual study will be guided by the formal study and laboratory sessions you attend, along with your reading and assignments. However, we expect you to demonstrate an active role in your own learning by reading widely and expanding your own knowledge, understanding and critical ability. Independent study will foster in you the ability to identify your own learning needs and determine which areas you need to focus on to become proficient in your subject area. This is an important transferable skill and will help to prepare you for the transition to working life.
Programme Title: JJX3 BEng Materials Science with Foundation

How will you be assessed?
To pass a module, you must achieve an overall mark of 40% or above. The overall mark in most modules is based on your performance in both the examination and coursework, the weighting of these two components varies per module.

How is the programme structured?
Please specify the structure of the programme diets for all variants of the programme (e.g. full-time, part-time - if applicable). The description should be sufficiently detailed to fully define the structure of the diet.

Structure
The programme structure outlined below is indicative of what you will study. It may change slightly from year to year as new topics are introduced and after we have listened to current student feedback on teaching.

The engineering foundation programme modules are designed to best prepare you for continuing your studies in engineering and materials science at undergraduate level. You will take 7 modules in total over two semesters, starting in September.

Year Long Modules
Compulsory, depending on your previous Maths qualifications, either:
SEF040 Mathematics A (double module, runs across semester 1 and 2)
SEF041 Mathematics B (double module, runs across semester 1 and 2)

Semester 1
Compulsory modules:
SEF003 Introductory Chemistry
SEF005 Physics - Mechanics and Materials
SEF030 Communication in Science & Technology

Semester 2
Compulsory modules:
SEF004 A Closer Look at Chemistry
SEF006 Physics - Fields and Waves
SEF007 Physics - Electricity and Atomic Physics

Academic Year of Study

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication in Science and Technology</td>
<td>SEF030</td>
<td>15</td>
<td>3</td>
<td>Core</td>
<td>0</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Mathematics A</td>
<td>SEF040</td>
<td>30</td>
<td>3</td>
<td>Elective</td>
<td>0</td>
<td>Semesters 1 & 2</td>
</tr>
</tbody>
</table>
Programme Title: JJX3 BEng Materials Science with Foundation

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Chemistry</td>
<td>SEF003</td>
<td>15</td>
<td>3</td>
<td>Compulsory</td>
<td>0</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Physics - Mechanics and Materials</td>
<td>SEF005</td>
<td>15</td>
<td>3</td>
<td>Compulsory</td>
<td>0</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Mathematics B</td>
<td>SEF041</td>
<td>30</td>
<td>3</td>
<td>Elective</td>
<td>0</td>
<td>Semesters 1 & 2</td>
</tr>
<tr>
<td>Physics - Electricity and Atomic Physics</td>
<td>SEF007</td>
<td>15</td>
<td>3</td>
<td>Compulsory</td>
<td>0</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Physics - Fields and Waves</td>
<td>SEF006</td>
<td>15</td>
<td>3</td>
<td>Compulsory</td>
<td>0</td>
<td>Semester 2</td>
</tr>
<tr>
<td>A Closer Look at Chemistry</td>
<td>SEF004</td>
<td>15</td>
<td>3</td>
<td>Compulsory</td>
<td>0</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

What are the entry requirements?

For students studying A levels, offers are normally for minimum BBB (depending on the subjects being studied to advanced level). Offers will be higher for students who have not studied any science subjects at an advanced level. The School does not make foundation offers to students if they are studying qualifications that would entitle them to apply directly to the degree programme.

For students studying the BTEC Extended Diploma, offer would be a minimum of DDD however could be higher.

Applications from mature students, and from students studying vocational courses, will be considered on an individual basis. We do not accept application to the Foundation programmes during clearing.

Find out more:
School of Engineering and Materials Science
Tel: +44 (0)20 7882 8736
email: sems-ugadmissions@qmul.ac.uk

How will the quality of the programme be managed and enhanced? How do we listen to and act on your feedback?

The Student-Staff Liaison Committee (SSLC) provides a formal means of communication and discussion between the School and its students. The committee consists of student representatives from each year in the School, together with appropriate representation from staff within the School. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. The Student-Staff Liaison Committees meets regularly throughout the year.

The Teaching & Learning Committee advises the School’s Director of Taught Programmes on all matters relating to the delivery of taught programmes at school level, including monitoring the application of relevant QM policies and reviewing proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in the committee’s work in a number of ways, such as through consideration of student surveys and input from the SSLC.

All schools/institutes operate an Annual Programme Review of their taught undergraduate and postgraduate provision. APR is a continuous process of reflection and action planning which is owned by those responsible for programme delivery; the main document of reference for this process is the Taught Programmes Action Plan (TPAP) which is the summary of the school/institute’s work throughout the year to monitor academic standards and to improve the student experience. Students’ views are considered in this process through analysis of the NSS and module evaluations.
What academic support is available?

Each student is provided with an Advisor who is their main point of contact for advice regarding academic matters and for assistance with pastoral concerns, throughout their whole programme. Students can see their advisors in their office hours or arrange an appointment via email. Moreover, if and when advisors are unavailable or cannot help with a specific problem, the School has several Senior Advisors to assist with student concerns.

The School also operates a PASS (Peer Assisted Study Support) programme for peer guidance.

How inclusive is the programme for all students, including those with disabilities?

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:
- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students’ Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one “study skills” tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)
- Mentoring support for students with mental health issues and conditions on the autistic spectrum.

Programme-specific rules and facts

N/A

Links with employers, placement opportunities and transferable skills

The materials industry is one of the world’s biggest industrial sectors, and is growing every year.

Graduates can work directly with materials, for example as a materials engineer, identifying the best materials at all stages of the manufacturing process. Other potential careers include working as a metallurgist, research scientist, technical engineer, biomedical engineer, manufacturing systems engineer or patent examiner.

Recent Materials Science and Engineering graduates have been hired by:
- Aflex Hose Ltd
- Alcoa
- Arup Group
- Jaguar Land Rover
- National Nuclear Laboratory
- Stone Foundries.
<table>
<thead>
<tr>
<th>Programme Specification Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person completing Programme Specification:</td>
</tr>
<tr>
<td>Person responsible for management of programme:</td>
</tr>
<tr>
<td>Date Programme Specification produced / amended by School / Institute Learning and Teaching Committee:</td>
</tr>
<tr>
<td>Date Programme Specification approved by Taught Programmes Board:</td>
</tr>
</tbody>
</table>