Programme Specification (PG)

Programme Title: MSc FT Computer Science

Awarding body / institution: Queen Mary University of London
Teaching institution: Queen Mary University of London
Name of final award and programme title: MSc Computer Science
Name of interim award(s): PG Certificate and PG Diploma
Duration of study / period of registration: 12 Months
Queen Mary programme code(s): G4U1
QAA Benchmark Group: Computing
FHEQ Level of Award: Level 7
Programme accredited by: BCS The Chartered Institute for IT
Date Programme Specification approved:
Responsible School / Institute: School of Electronic Engineering & Computer Science

Schools / Institutes which will also be involved in teaching part of the programme:
NA

Collaborative institution(s) / organisation(s) involved in delivering the programme:
NA

Programme outline

This MSc programme offers a broad range of advanced study options, with modules taken from a variety of application areas. It is multidisciplinary and, in addition to computer science, you may choose options in which computer science intersects with other fields. The programme prepares you for a wide range of careers depending on your selection of modules studied. Typical jobs after graduation include advanced programmer, software development and support, software engineer, product designer/developer, systems analyst, interface/interaction designer, database developer, and other specialist employment based on your selected study areas.

Aims of the programme

The aim of this Masters programme is to offer a broad range of advanced study in the conceptual analysis of information and the development of effective technologies for its representation, distribution and use. The programme is multi-disciplinary and in addition to computer science optionally involves aspects of cognitive psychology, psycholinguistics, artificial intelligence, bioinformatics, logic, sociology and organisational management. The course aims to address both fundamental principles and
advanced techniques and to provide students with directly applicable knowledge and skills. The course is aimed at preparing students both for research study and specialist employment, especially in domains such as broadcasting, multimedia production, consumer electronics and IT equipment-manufacturing.

The aims of the placement year are to:
- Ground the taught components of the programme in practical experience at a scale not possible within the College;
- Improve career preparation, giving students a better understanding of future career options and enhancing their career prospects.

What will you be expected to achieve?

The programme provides opportunities for students:

(i) to develop a knowledge of a range of modelling, evaluation and design methods used in research and development in the focal areas of the programme.

(ii) to gain experience with applying them in practice in a research-oriented project.

Academic Content:

A 1 Theories, principles and techniques on Computer Science
A 2 Programming languages and environments, systems development methodologies
A 3 Approaches to program and system testing and evaluation

Disciplinary Skills - able to:

B 1 Design, implement and test software systems
B 2 Critically evaluate alternative technology solutions
B 3 Design and implement data structures that are appropriate to a given software solution
B 4 Critically reflect on their own performance in Computing projects and apply to future projects

Attributes:

C 1 Integrate scholarship, research and professional activities with the Computing discipline in a developing professional career
C 2 Evaluate their practice and engage in continuing professional development

How will you learn?

Each non-project-based module normally involves lectures, problem solving coursework and practical sessions. Lectures are used
to introduce principles and methods and also to illustrate how they can be applied in practice. Coursework allows students to
develop their skills in problem solving and to gain practical experience. Practical sessions provide students with guidance and
help while solving a problem. These lessons take the form of exercise classes and programming laboratories that allow the
students to learn-by-doing in order to complement the lectures.

Individual projects are undertaken during the summer months under the supervision of an academic member of staff with whom
there are normally weekly consultancy meetings. These are used for students to report on their progress, discuss research and
design issues and plan their future work. This develops and reinforces students’ ability to communicate technical ideas clearly
and effectively. The Projects Coordinator also runs a thread of taught sessions to support the project module. A number of
industrial-linked projects may be offered each year, which students can apply for.

How will you be assessed?
The assessment of taught modules normally consists of a combination of written examination and coursework.
The project is examined on the basis of a written report, a formal oral presentation, and, where applicable, a demonstration of
any software and/or hardware developed by the student.

How is the programme structured?
Please specify the structure of the programme diets for all variants of the programme (e.g. full-time, part-time -
if applicable). The description should be sufficiently detailed to fully define the structure of the diet.

Year 1

Semester 1
ECS713P Functional Programming (15 credits)
ECS789P Semi-Structured Data and Advanced Data Modelling (15 credits)
Select 2 from:
ECS708P Machine Learning (15 credits)
ECS712P Design for Human Interaction (15 credits)
ECS763P Natural Language Processing (15 credits)
ECS7018P Logic in Computer Science (15 credits)

Semester 2
ECS726P Security and Authentication (15 credits)
ECS773P Bayesian Decision and Risk Analysis (15 credits)
Select 2 from:
ECS725P Mobile Services (15 credits)
ECS733P Interactive Systems Design (15 credits)
ECS735P The Semantic Web (15 credits)
ECS736P Information Retrieval (15 credits)
ECS784P Data Analytics (15 credits)
ECS796P Distributed Systems (15 credits)

Semester 3
Programme Title: MSc FT Computer Science

ECS750P Project (60 credits)

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Programming</td>
<td>ECS713P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Semi-Structured Data and Advanced Data Modelling</td>
<td>ECS789P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>ECS708P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Design for Human Interaction</td>
<td>ECS712P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Natural Language Processing</td>
<td>ECS763P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Logic in Computer Science</td>
<td>ECS7018P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Security and Authentication</td>
<td>ECS726P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Bayesian Decision and Risk Analysis</td>
<td>ECS773P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Mobile Services</td>
<td>ECS725P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Interactive Systems Design</td>
<td>ECS733P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>The Semantic Web</td>
<td>ECS735P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Information Retrieval</td>
<td>ECS736P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Data Analytics</td>
<td>ECS784P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Distributed Systems</td>
<td>ECS796P</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Project Module</td>
<td>ECS750P</td>
<td>60</td>
<td>7</td>
<td>Core</td>
<td>1</td>
<td>Semester 3</td>
</tr>
</tbody>
</table>
What are the entry requirements?

Further information on our entry requirements can be found at http://eecs.qmul.ac.uk/postgraduates/entry-requirements/

How will the quality of the programme be managed and enhanced? How do we listen to and act on your feedback?

The Student-Staff Liaison Committee provides a formal means of communication and discussion between the School and its students. The committee consists of student representatives from each cohort, together with appropriate representation from School staff. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. Student-Staff Liaison Committees meet four times a year, twice in each teaching semester.

Each semester, students are invited to complete a web-based module questionnaire for each of their taught modules, and the results are fed back through the SSLC meetings. The results are also made available on the student intranet, as are the minutes of the SSLC meetings. Any actions necessary are taken forward by the relevant Senior Tutor, who chairs the SSLC, and general issues are discussed and actioned through the School’s Teaching and Learning Committee (TLC).

The School’s TLC advises the Director of Education on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in this Committee’s work in a number of ways, including through student membership and consideration of student surveys and module questionnaires.

The School participates in the College’s Annual Programme Review process, which supports strategic planning and operational issues for all undergraduate and taught postgraduate programmes. The APR includes consideration of the School’s Taught Programmes Action Plan, which records progress on learning and teaching related actions on a rolling basis. Students’ views are considered in the APR process through analysis of the NSS and module questionnaires, among other data.

What academic support is available?

All students are assigned an academic advisor during induction week. The advisor’s role is to guide their advisees in their academic development including module selection, and to provide first-line pastoral support.

In addition, the School has a Senior Tutor for postgraduate students who provides second-line guidance and pastoral support for students, as well as advising staff on related matters.

Every member of teaching staff holds 2 open office hours per week during term-time.

Additional academic support is provided to those students who are successful in securing an industrial-linked project.

Programme-specific rules and facts

All students are assigned an academic advisor during induction week. The advisor’s role is to guide their advisees in their academic development including module selection, and to provide first-line pastoral support.

In addition, the School has a Senior Tutor for postgraduate students who provides second-line guidance and pastoral support for students, as well as advising staff on related matters.

Every member of teaching staff holds 2 open office hours per week during term-time.

Additional academic support is provided to those students who are successful in securing an industrial-linked project. The programme adheres to the standard Academic Regulations for taught postgraduate programmes, with a special regulation for a
Programme Title: MSc FT Computer Science

How inclusive is the programme for all students, including those with disabilities?

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:
- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students’ Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one "study skills" tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)
- Mentoring support for students with mental health issues and conditions on the autistic spectrum.

Links with employers, placement opportunities and transferable skills

The School has a wide range of industrial contacts secured through research projects and consultancy, our Industrial Experience programme and our Industrial Advisory Panel.

The Industrial Advisory Panel works to ensure that our programmes are state-of-the-art and match the changing requirements of this fast-moving industry. The Panel includes representatives from a variety of Computer Science oriented companies ranging from SMEs to major blue-chips. These include: Microsoft Research, IBM, The National Physical Laboratory, National Instruments, PA Consulting, Rohde and Schwarz, O2, Cisco Systems, ARM, Selex and BAE Systems.

Recent graduates have found employment as IT consultants, specialist engineers, web developers, systems analysts, software designers and network engineers in a wide variety of industries and sectors. A number of students also go on to undertake PhDs in electronic engineering and computer science. Merrill Lynch, Microsoft, Nokia, Barclays Capital, Logica, Credit Suisse, KPMG, Transport for London, Sky and Selex ES are among the organizations that have recently employed graduates of EECS programmes.

Transferable skills are developed through a variety of means, including embedding of QM Graduate Attributes in taught modules and the summer project, together with the opportunity to participate in extra-curricular activities, e.g. the School’s E++ Society, the School’s Annual Programming Competition and external competitions with support from the School.

Students have the opportunity to undertake an industrial-linked project in the summer - these are very competitive.